Nucleation in A/B/AB blends: interplay between microphase assembly and macrophase separation.
نویسندگان
چکیده
We study the interplay between microphase assembly and macrophase separation in A/B/AB ternary polymer blends by examining the free energy of localized fluctuation structures (micelles or droplets), with emphasis on the thermodynamic relationship between swollen micelles (microemulsion) and the macrophase-separated state, using self-consistent field theory and an extended capillary model. Upon introducing homopolymer B into a micelle-forming binary polymer blend A/AB, micelles can be swollen by B. A small amount of component B (below the A-rich binodal of macrophase coexistence) will not affect the stability of the swollen micelles. A large excess of homopolymer, B, will induce a microemulsion failure and lead to a macrophase separation. Between the binodal and the microemulsion failure concentration, macrophase separation in A/B/AB occurs by a two-step nucleation mechanism via a metastable microemulsion droplet of finite size. Our results illustrate a recently proposed argument that the two-step nucleation via a metastable intermediate is a general phenomenon in systems involving short-range attraction and long-range repulsion.
منابع مشابه
Lifshitz points in blends of AB and BC diblock copolymers
– We consider microand macro-phase separation in blends of AB and BC flexible diblock copolymers. We show that, depending on architecture, a number of phase diagram topologies are possible. Microphase separation or macrophase separation can occur, and there are a variety of possible Lifshitz points. Because of the rich parameter space, Lifshitz points of multiple order are possible. We demonstr...
متن کاملDiblock Copolymer / Homopolymer Blends: Derivation of a Density Functional Theory
Melts of diblock copolymer / homopolymer blends exhibit multiscale phase separation: (i) macrophase separation into homopolymerand copolymer-rich macrodomains followed by (ii) microphase separation into Aand B-rich microdomains within the copolymer-rich macrodomains (cf. [16, 17, 26]). Following our previous derivation in [6], we derive a density functional theory for blends. This theory has be...
متن کاملStructure and assembly of dense solutions and melts of single tethered nanoparticles.
The microscopic polymer reference interaction site model theory is generalized and applied to study intermolecular pair correlation functions and collective structure factors of dense solutions and melts of spherical nanoparticles carrying a single tethered chain. The complex interplay of entropy (translational, conformational, and packing) and enthalpy (particle-particle attraction) leads to d...
متن کاملDeviations from the mean field predictions for the phase behaviour of random copolymers melts
– We investigate the phase behaviour of random copolymers melts via large scale Monte Carlo simulations. We observe macrophase separation into A and B–rich phases as predicted by mean field theory only for systems with a very large correlation λ of blocks along the polymer chains, far away from the Lifshitz point. For smaller values of λ, we find that a locally segregated, disordered microemuls...
متن کاملEffective Interactions, Structure, and Phase Behavior of Lightly Tethered Nanoparticles in Polymer Melts
We have generalized the microscopic polymer reference interaction site model (PRISM) theory to study the structure and phase behavior of polymer-tethered spherical nanoparticles in a dense homopolymer melt. In the absence of a polymer matrix, fluids of such hybrid nanoparticles show strong concentration fluctuations indicative of aggregate formation and/or a tendency for microphase separation a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 130 15 شماره
صفحات -
تاریخ انتشار 2009